阶段六:AI计算机视觉核心技术与项目实战-工业&医疗与直播&自动驾驶等主流领域
一、视觉领域】图像分类技术与项目实战
本阶段学习深度学习之图像分类的相关理论与实践内容,带领学生进行以下实战内容:从零完成人脸表情识别、生活用品多标签图像分类。
课程安排:
1. 了解图像分类问题划分
2. 了解多类别图像分类模型结构
3. 了解多标签图像分类方法
4. 掌握从零搭建图像分类模型并实现训练与测试的完整流程
5. 掌握多标签图像分类方法并实现训练与测试的完整流程
二、【工业领域】目标检测技术与项目实战
本阶段学习深度学习之目标检测的相关理论与实践内容,,包括two-stage算法-Faster RCNN系列详解、One-stage算法-YOLO系列详解、带领学生进行YOLO v5车牌检测实战
课程安排:
1. 了解目标检测基本流程
2. 了解目标检测评估指标
3. 掌握非极大值抑制目标检测后处理方法
4. 掌握YOLO v1-v8的系列算法原理
5. 掌握基于YOLO v5实现车牌目标检测任务的完整流程
三、【医疗与直播领域】图像分割技术与项目实战
本阶段学习深度学习之语义分割的相关理论与实践内容,带领学生进SimpleNet人脸分割实战
课程安排:
1. 了解图像分割问题划分
2. 掌握语义分割经典模型FCN
3. 掌握语义分割经典模型UNet
4. 掌握膨胀卷积原理
5. 掌握语义分割经典模型系列Deeplab
6. 掌握从零搭建图像分割模型并实现训练与测试的完整流程
四、【自动驾驶领域】自动驾驶感知算法技术与项目实战
本阶段针对自动驾驶领域中的核心感知算法,带领学生进行道路分割与车辆检测实战
课程安排:
1. 学习CityScape数据集
2. 使用语义分割经典模型HRNet训练道路分割模型并测试使用
3. 学习YOLO v8框架
4. 使用YOLO v8框架训练车辆检测模型并测试使用
五、【视频分析领域-火热领域】视频分类技术与项目实战
本阶段学习深度学习之视频分类的相关理论与实践内容,包括3D模型与双流模型、带领学生进行3DCNN模型视频分类实战
课程安排:
1. 了解3D卷积原理
2. 掌握3DCNN模型结构
3. 掌握C(2+1)D模型结构
4. 了解视频分类任务与数据集
5. 掌握从零搭建3DCNN模型并实现训练与测试的完整流程